

ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS

Weijie Wang^{1⊠} Donny Y. Chen^{2⊠}

Zeyu Zhang³

Duochao Shi¹

Akide Liu³

Bohan Zhuang¹

[™] Corresponding authors. ¹Zhejiang University ²ByteDance Seed ³Monash University Weijie Wang (王伟杰)

College of Computer Science and Technology, Zhejiang University 2025/6/16

About Me

>>>> Weijie Wang (王伟杰)

First-year Ph.D. student@ **ZIP Lab, State Key Lab of CAD&CG, ZJU**Supervised by **Prof. Bohan Zhuang**

Research Interest:

• Feed-Forward Reconstruction: <u>ZPressor</u>, <u>PM-Loss</u>, <u>VolSplat</u>

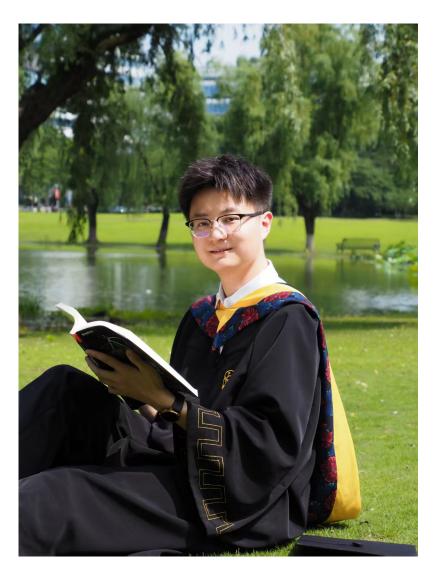
• Dynamic Reconstruction: <u>Street Gaussians</u>, <u>DriveGen3D</u>

Interactive Generation: WonderTurbo

Webpage: https://lhmd.top

Email: wangweijie@zju.edu.cn

Wechat: zju-lhmd



Background

Tasks

Contents: 3D Scenes

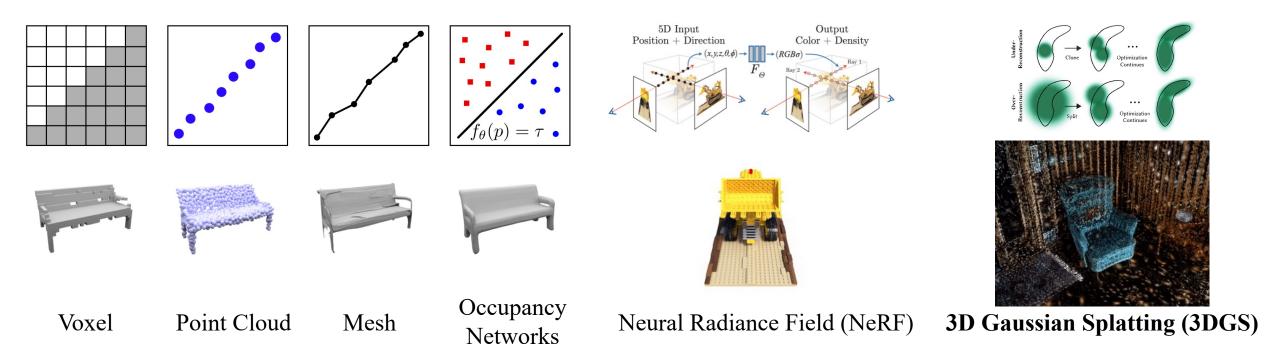
Outputs: 2D novel views

Inputs: 2D observed views

3D Reconstruction

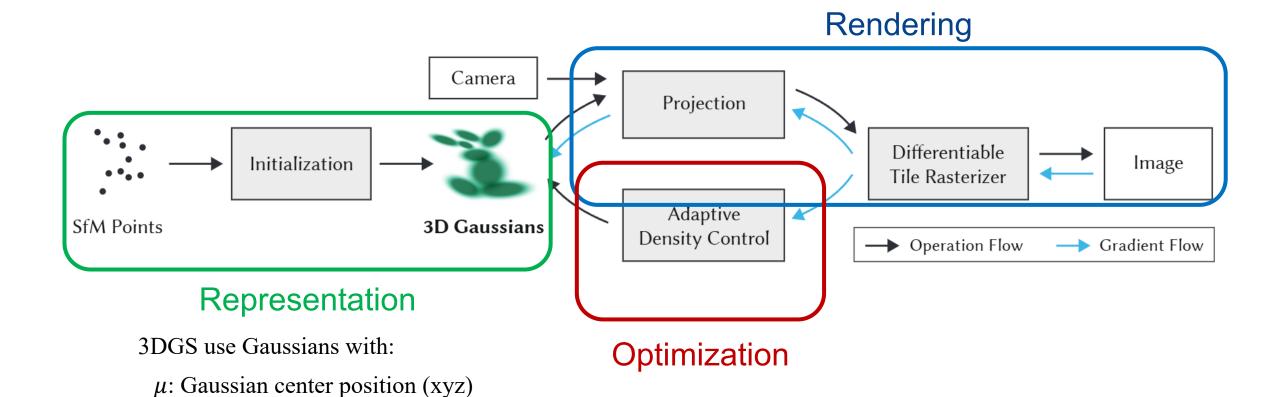
Novel View Synthesis

3D Representations



There is no canonical representation in 3D. We chose 3DGS since it performs the best for NVS in general.

3D Gaussian Splatting (3DGS)



 α : opacity; (how transparent)

 Σ : covariance; (scale, rotation)

c: color; (spherical harmonic)

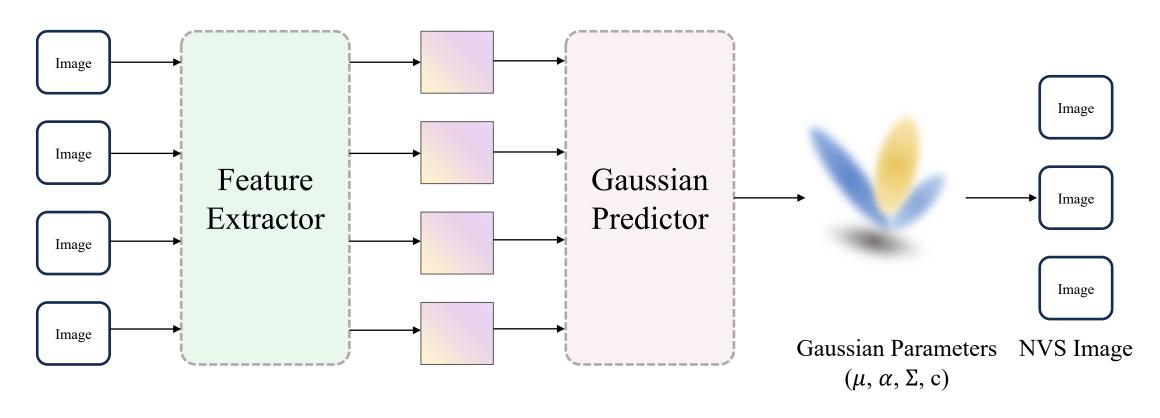
Limitations of Per-Scene based 3DGS

- **1. Time:** requires applying the optimization process to *each scene* (20+ mins)
- **2. Space:** requires additional permanent storage for the 3D representation of *each scene* (10+ M)

The bicycle scene takes: ~50 mins, ~100 M

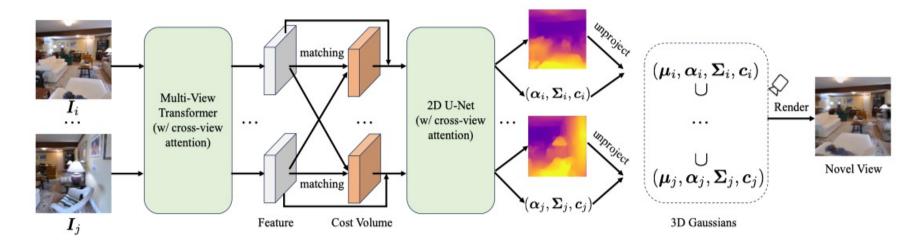
Note: Here, we refer to the inria's version of 3DGS; NOT those improved models such as sparse-view 3DGS, fast-training 3DGS, 3DGS compression, *etc.*

Pipeline of Feed-Forward 3DGS



Almost all feed-forward 3DGS networks use this paradigm.

Example: MVSplat



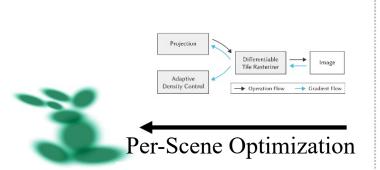
$$f_{\boldsymbol{\theta}}: \{(\boldsymbol{I}^i, \boldsymbol{P}^i)\}_{i=1}^K \mapsto \{(\boldsymbol{\mu}_j, \alpha_j, \boldsymbol{\Sigma}_j, \boldsymbol{c}_j)\}_{j=1}^{H \times W \times K}$$

Inputs: Multi-view images, with corresponding camera poses

Outputs: Pixel-align 3D Gaussians for the scenes

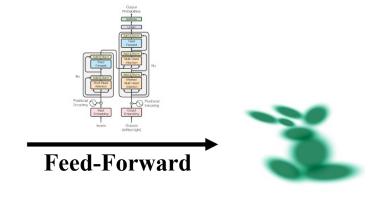
NVS: Render the predicted 3DGS from novel viewpoints

Per-Scene VS Feed-Forward



Time: 10+ mins

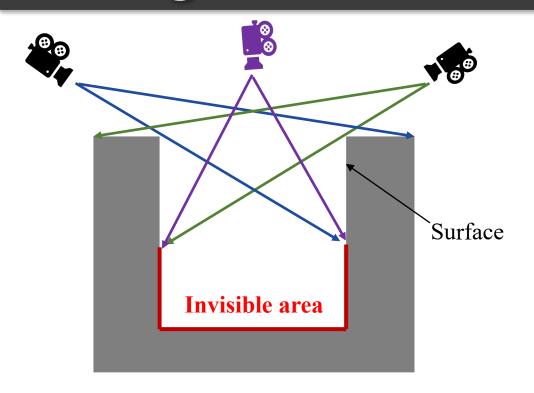
Space: 10+ M

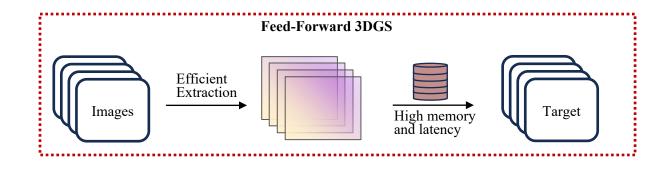


Time: Real-time or a few seconds

Space: Direct inference, no permanent storage

Challenges in Feed-Forward 3DGS



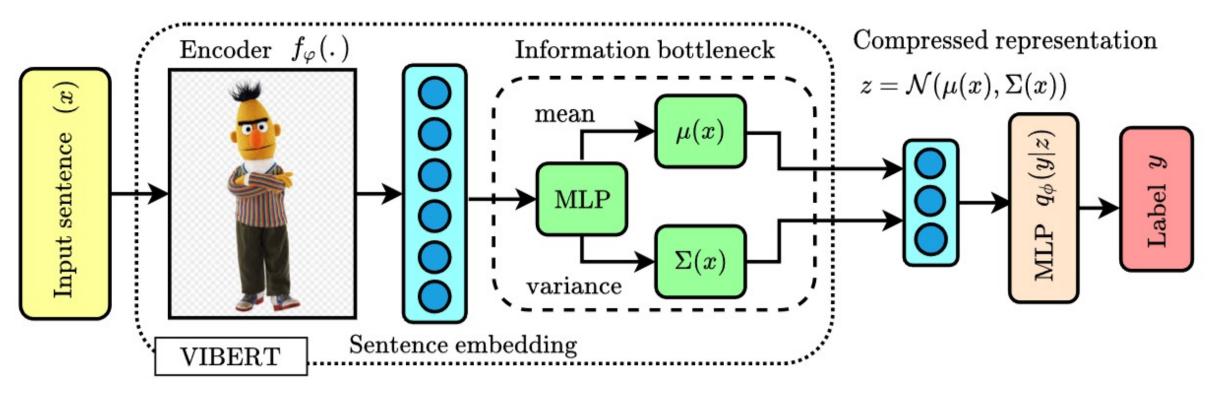


We need denser views to provide more information, but at the same time not be influenced by redundancy.

The scalability of feed-forward 3DGS is fundamentally constrained by the limited capacity of their encoders.

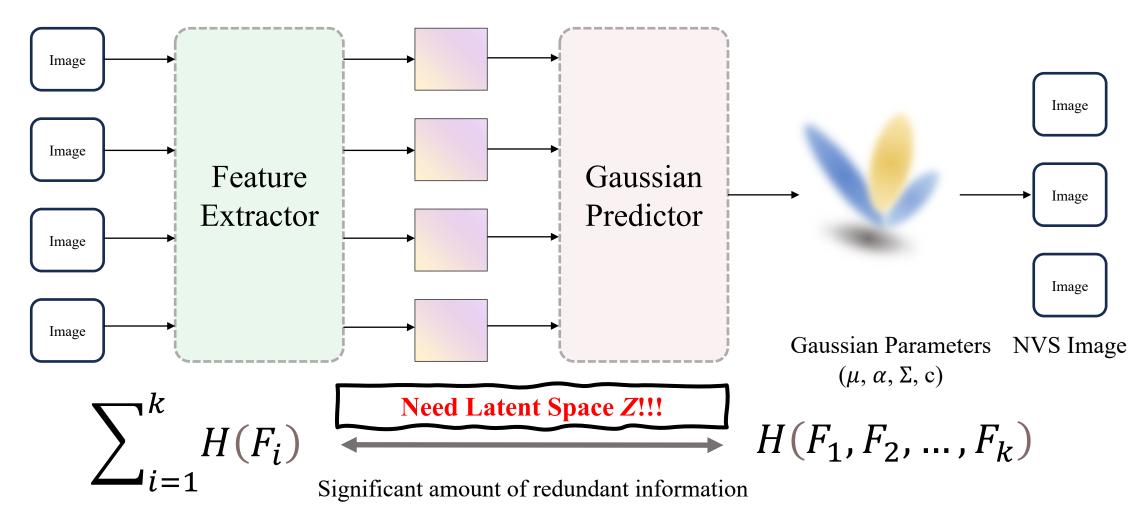
ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS

Information Bottleneck Theory

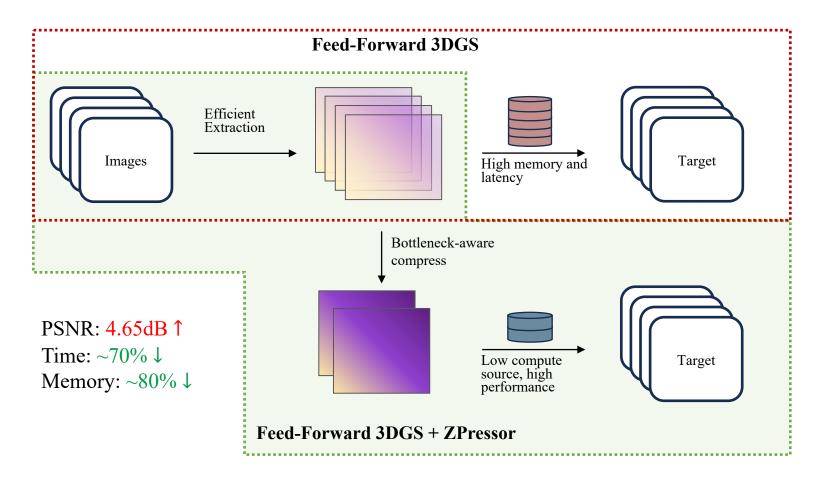


$$I(Z,Y;\boldsymbol{\theta}) = \int dx \; dy \; p(z,y|\boldsymbol{\theta}) \log \frac{p(z,y|\boldsymbol{\theta})}{p(z|\boldsymbol{\theta})p(y|\boldsymbol{\theta})}.^{2} \qquad \min_{\mathcal{Z}} IB = \underbrace{\beta \, I(\mathcal{X},\,\mathcal{Z})}_{\text{Compression Score}} - \underbrace{I(\mathcal{Z},\,\mathcal{Y})}_{\text{Prediction Score}}$$

Information Flow in FF 3DGS



Bottleneck-Aware Compression

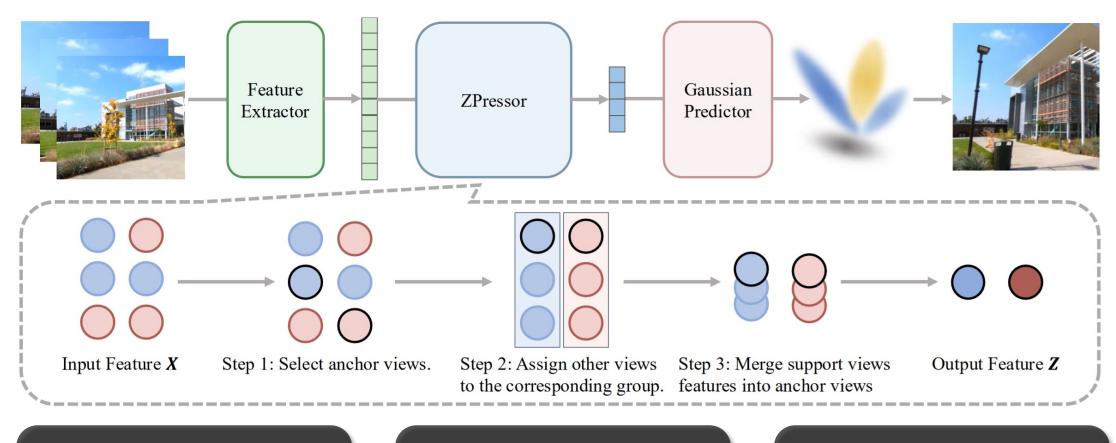


$$\min_{\mathcal{Z}} IB = \underbrace{\beta I(\mathcal{X}, \mathcal{Z})}_{\text{Compression Score}} - \underbrace{I(\mathcal{Z}, \mathcal{Y})}_{\text{Prediction Score}}$$

- Compression Score: Minimizing I(X, $\mathcal{Z})$
- 2. Prediction Score: Maximizing $I(\mathcal{Z}, \mathcal{Y})$

Note: The mutual information (MI) of two random variables $I(\cdot,\cdot)$ is a measure of the mutual dependence between the two variables.

Zpressor: Overview



Anchor View Selection

Support-to-anchor Assignment

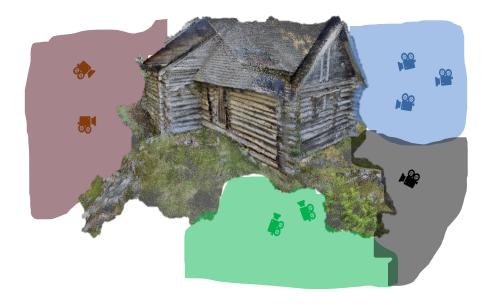
Views Information Fusion

Anchor View Selection

Algorithm 2 Farthest Point Sampling for Anchor View Selection

```
Input: Set of view camera positions \mathcal{T} = \{\mathbf{T}_1, \mathbf{T}_2, ..., \mathbf{T}_K\}, Number of anchor views N
Output: Indices of the selected anchor views S = \{T_{a_1}, T_{a_2}, ..., T_{a_n}\}
   Initialize the set of anchor view indices \mathcal{S} \leftarrow \emptyset
   Randomly select a random anchor view T_{a_1} \in \mathcal{T}, where T_{a_1} \sim \text{Uniform}(\mathcal{T})
   Add \mathbf{T}_{a_1} to \mathcal{S}: \mathcal{S} \leftarrow \{\mathbf{T}_{a_1}\}
   for j \leftarrow 2 to N do
         Initialize a dictionary to store minimum distances D \leftarrow \{\}
        for k \leftarrow 1 to K do
              if k \notin \mathcal{S} then
                   Calculate the minimum distance d_k \leftarrow \min_{i \in \mathcal{S}} \|\mathbf{T}_k - \mathbf{T}_i\|_2
                    Store the distance: D[k] \leftarrow d_k
              end if
        end for
        Find the view position T_{a_i} with the maximum minimum distance: T_{a_i} \leftarrow \arg\max_{k \notin \mathcal{S}} D[k]
        Add a_j to \mathcal{S} : \mathcal{S} \leftarrow \mathcal{S} \cup \{T_{a_i}\}
   end for
   return S
```

Support-to-anchor Assignment

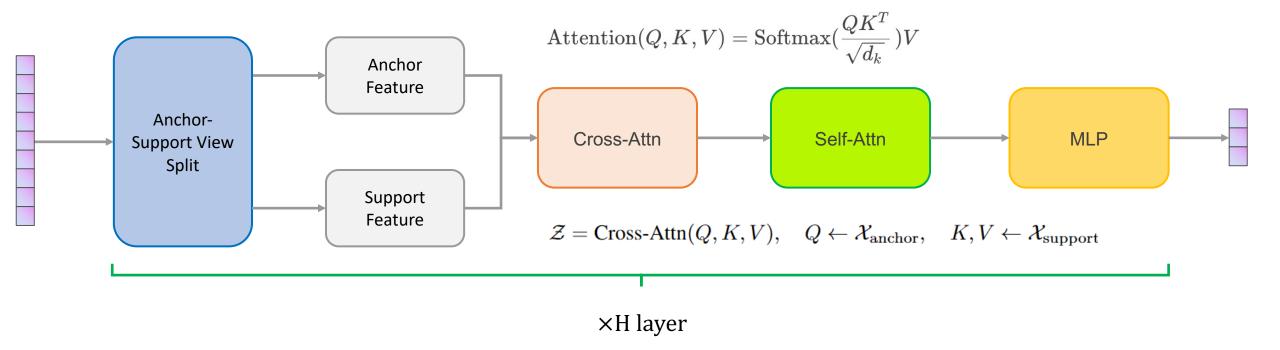


View Groups after Step 1 and Step 2

- Once anchor views are selected, each support view is assigned to its nearest anchor based on camera position.
- This grouping ensures that support views, which capture complementary scene details, are paired with the most spatially relevant anchor views.
- This pairing thereby ensures the effectiveness of information fusion.
- Formally, the cluster assignment to the i-th anchor view can be denoted as:

$$C_i = \{ f(\mathbf{T}) \in \mathcal{X}_{\text{support}} \mid ||\mathbf{T} - \mathbf{T}_{a_i}|| \le ||\mathbf{T} - \mathbf{T}_{a_j}||, \forall j \ne i \}$$

Views Information Fusion



Design of Feature Fusion Networks. Feature Fusion by Cross-Attention, Self-Attention and MLP.

Results on DL3DV with DepthSplat

Views	Methods	PSNR↑	SSIM↑	LPIPS↓
36 views	DepthSplat + ZPressor	19.23 23.88 +4.65	0.666 0.815 _{+0.149}	0.286 0.150 -0.136
24 views	DepthSplat + ZPressor	20.38 24.26 +3.88	0.711 0.820 +0.109	0.253 0.147 -0.106
16 views	DepthSplat + ZPressor	22.07 24.25 _{+2.18}	0.773 0.819 +0.046	0.195 0.147 -0.047
12 views	DepthSplat + ZPressor	23.32 24.30 _{+0.97}	0.807 0.821 _{+0.014}	0.162 0.146 -0.017

Results on RE10K with MVSplat

Views	Methods	PSNR↑	PSNR↑ SSIM↑	
	pixelSplat	OOM	OOM	OOM
36 views	pixelSplat + ZPressor	26.59	0.849	0.225
	MVSplat	24.19	0.851	0.155
	MVSplat + ZPressor	27.34+3.15	$0.893_{\pm 0.042}$	0.113-0.042
	pixelSplat	OOM	OOM	OOM
24 views	pixelSplat + ZPressor	26.72	0.851	0.223
	MVSplat	25.00	0.871	0.137
	MVSplat + ZPressor	$27.49_{+2.49}$	$0.895_{\pm 0.024}$	0.111-0.026
	pixelSplat	OOM	OOM	OOM
16 views	pixelSplat + ZPressor	26.81	0.853	0.221
	MVSplat	25.86	0.888	0.120
	MVSplat + ZPressor	27.60 _{+1.74}	$0.896_{\pm 0.008}$	$0.110_{-0.010}$
8 views	pixelSplat	26.19	0.852	0.215
	pixelSplat + ZPressor	$26.86_{\pm 0.67}$	$0.854_{\pm 0.002}$	0.219 + 0.004
	MVSplat	26.94	0.902	0.107
	MVSplat + ZPressor	$27.72_{+0.78}$	0.897-0.005	0.109 + 0.002

Qualitative comparison

Visualization on DL3DV (36 Input Views)

a62c330f5403e2e41a82a74c4e865b705c5706843b992fae2fe2e538b122d984

63798f5c6fbfcb4eb686268248b8ecbc8d87d920b2bcce967eeaedfd3b3b6d82

Analysis of model efficiency

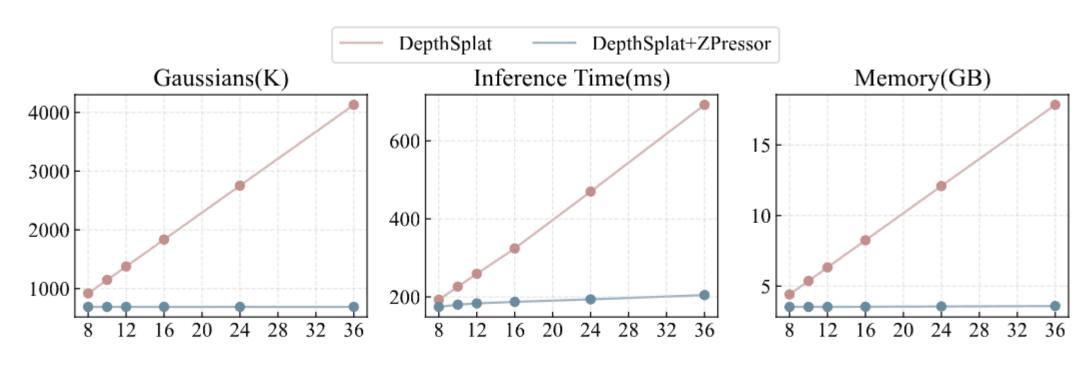


Figure 5: Efficiency analysis. We report the number of Gaussians (K), inference time (ms) and peak memory (GB) of DepthSplat [12] and DepthSplat with ZPressor.

Analysis of the Information Bottleneck

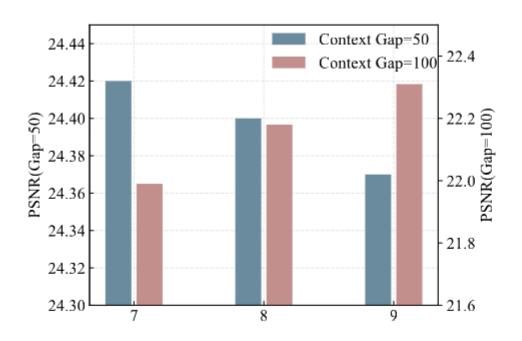
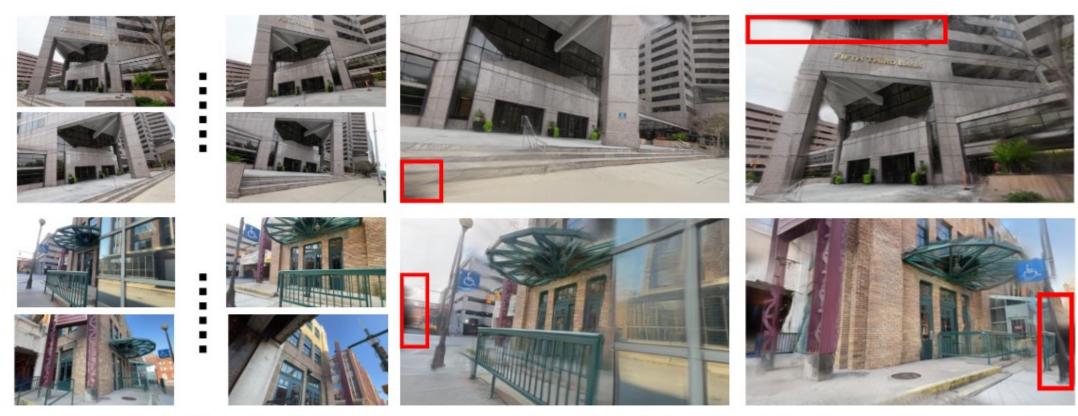


Figure 6: Analysis of the bottleneck constraint. We compare the performance of ZPressor in different scale of scene coverage.

Limitations



Inputs (~500 views)

DepthSplat + ZPressor

ZPressor exhibits limitations when processing scenarios with an extremely high density of input views.

More Information

Paper, code and model will be available on our project page

ZIP Lab. We are currently recruiting research assistants for 3D LM topic

Weijie Wang's homepage. Actively seeking cooperation

THANK YOU

Weijie Wang (王伟杰)

College of Computer Science and Technology, Zhejiang University 2025/6/16

Cross Dataset Generalization on ACID

Views	Methods	PSNR↑	SSIM↑	LPIPS↓
36 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + Ours	27.78	0.823	0.238
	MVSplat	24.89	0.812	0.179
	MVSplat + Ours	t + Ours 27.78 0.823 24.89 0.812 + Ours 28.16+3.27 0.853+ t OOM OOM t + Ours 27.91 0.825 25.46 0.829 + Ours 28.33+2.87 0.856+ t OOM OOM t + Ours 27.97 0.826 26.08 0.844	$0.853_{\pm 0.041}$	$0.145_{-0.034}$
	pixelSplat	OOM	OOM	OOM
24 views	pixelSplat + Ours	27.91	0.825	0.235
	MVSplat	25.46	0.829	0.167
	MVSplat + Ours	28.33+2.87	$0.856_{\pm 0.027}$	$0.142_{-0.025}$
	pixelSplat	OOM	I OOM	OOM
16 views	pixelSplat + Ours	27.97	0.826	0.234
	MVSplat	26.08	0.844	0.156
	MVSplat + Ours	$28.42_{+2.34}$	$0.858_{\pm 0.014}$	$0.141_{-0.015}$
8 views	pixelSplat	26.69	0.807	0.260
	pixelSplat + Ours	28.05+1.36	$0.828_{\pm 0.021}$	$0.234_{-0.026}$
	MVSplat	27.89	0.864	0.140
	MVSplat + Ours	$28.60_{\pm 0.71}$	0.860-0.004	$0.140_{-0.000}$

Ablation Studies

Table 4: Ablation study of our method with DepthSplat [12] on the DL3DV dataset [17]. Models are evaluated by rendering eight novel views using 12 input views.

Methods	PSNR↑	SSIM↑	LPIPS↓	Time (s)	Peak Memory (GB)
DepthSplat + ZPressor	24.30	0.821	0.146	0.184	3.80
w/o multi-blocks	24.18	0.817	0.149	0.140	3.79
w/o self-attention	23.85	0.810	0.156	0.183	3.80
DepthSplat	23.32	0.808	0.162	0.260	6.80

Note: All ablation models and training settings will be available on our GitHub project.